
Lecture 17:

• Semantic Analysis (intro)

Announcements:

• HW-3 out

• Quiz 4 on Friday (AST creation)

CPSC 326 (Spring 2024) S. Bowers 1 of 5



Intro to Semantic Analysis – Important Terminology

Denotable Objects

• Items that can be “named” in a programming language

• By the programmer (e.g., variables, functions, classes)

• By the language itself (e.g., primitive types, built-in functions)

Blocks

• A block is a textual region of a program (e.g., function body, loop body)

• A block uses syntax to define start and end

• Declarations (e.g., of user-defined denotable objects) occur within “blocks”

Bindings

• The association between between names and objects

• Type bindings connect names to their types

• Location bindings connect names to their locations in memory

• Value bindings connect names to their corresponding values

Environments (aka Contexts)

• The current set of bindings of a program, statement, expression

• Typing environments give names and their types “visible” at a program location

• Similarly with locations and values

CPSC 326 (Spring 2024) S. Bowers 2 of 5



Scope Rules (aka “visibility” rules)

• Define what names are visible in which blocks

• An object is local to the block it is declared in

• In general, an object is visible in its local and nested blocks

• To find the declaration, look in the current block and the containing blocks

Static vs Dynamic

• Static generally implies decisions made at compile time (before runtime)

• Dynamic generally implies decisions made at runtime

Static Scope (aka “lexical” scope)

• The visibility of names determined at compile time

• Based on the text of the source code

• What we normally think of as scope (visibility)

Dynamic Scope

• The visibility of names determined at runtime

• Based on last association created for the name

Most (modern) PLs primarily adopt static scoping rules

• some tricky cases though ...

• e.g., with nested functions, passing code blocks to functions, closures

CPSC 326 (Spring 2024) S. Bowers 3 of 5



The goal of static analysis is to:

• Detect errors due to type issues, e.g.:

x = 0 + "1"; // int + string not allowed
if (42 <= true) { // int <= bool not allowed
x = 1;

}

• Detect “use before def” errors, e.g.:

int x = 42 + y; // y not defined
if (x > 42) {
int y = x + 1;

}
else {
x = y; // y not defined in this block

}

• Detect function call errors, e.g.:

int add(int x, int y) {
return x + y;

}
void main() {
int r1 = add(1, 2, 3); // wrong number of args
int r2 = add(3.14, 1); // wrong argument types
bool r3 = add(1, 2); // wrong return type

}

• plus more ...

CPSC 326 (Spring 2024) S. Bowers 4 of 5



Summary – Things to Know

1. Definitions of Denotable Objects, Blocks, Bindings, Environments, Scope Rules,
Static vs Dynamic, Static Scope, and Dynamic Scope

2. Basic examples of use-before-def and type errors in MyPL

CPSC 326 (Spring 2024) S. Bowers 5 of 5


