Today

- Course Overview (remainder of semester)
- λ calculus (cont)
- Intro to Haskell

Assignments

- HW5 & HW6 due Thurs
From λ-calculus to functional programming

Basic idea of λ-calculus

1. Unnamed, single-variable functions (“λ functions”)
 - \(\lambda x.x \) takes an \(x \) and returns an \(x \)
 - \(\lambda x.(\lambda y.x) \) takes \(x \) and returns a function that takes \(y \) and returns \(x \)
 - shorthand for multi-argument functions: \(\lambda xy.x \)

2. Function application
 - \((\lambda x.x)0\) applies the identity function to \(0 \) (resulting in \(0 \))
 - \((\lambda x.(\lambda y.x))ab\) reduces to \(a \) ... \((\lambda x.(\lambda y.x))ab \Rightarrow (\lambda y.a)b \Rightarrow a\)

3. Expressions
 - Either a function, an application, or a name (like \(x, a, 0 \), etc.)
 - A function has the form: \(\lambda x.e \) where \(x \) is a name and \(e \) an expression
 - An application has the form: \(e_1e_2 \) where both \(e \)'s are expressions

Computation in λ-calculus is via function application

- Given a function application such as:

 \((\lambda x.x)y\)

- An application is evaluated by substituting \(x \)'s in the function body with \(y \):

 \((\lambda x.x)y = [y/x]\ x = y\)
Substitutions give a way to simplify λ-expressions:

\[
T \equiv \lambda xy . x \quad \text{(True)} \\
F \equiv \lambda xy . y \quad \text{(False)}
\]

We can use these to define basic logical operators (AND, OR, NOT):

\[
\land \equiv \lambda xy . (\lambda uv . v) \equiv \lambda xy . xyF \\
\lor \equiv \lambda xy . (\lambda uv . u)y \equiv \lambda xy . xTy \\
\neg \equiv \lambda x . (\lambda uv . v)(\lambda ab . a) \equiv \lambda x . xFT
\]

For Example:

\[
T \land T = (\lambda xy . xyF)TT = (\lambda y . TyF)T = TTF = (\lambda xy . x)TF = T \\
T \land F = (\lambda xy . xyF)TF = (\lambda y . TyF)F = TFF = (\lambda xy . x)FF = F
\]

Exercise 1: Evaluate the expressions:

\[
F \land T = (\lambda xy . xyF)FT = (\lambda y . FyF)T = FTF = (\lambda xy . y)TF = F \\
F \land F = (\lambda xy . xyF)FF = (\lambda y . FyF)F = FFF = (\lambda xy . y)FF = F \\
F \lor T = (\lambda xy . xTy)FT = FTT = (\lambda xy . y)TT = T \\
\neg T = (\lambda x . xFT)T = TFT = (\lambda xy . x)FT = F \\
\neg F = (\lambda x . xFT)F = FFT = (\lambda xy . y)FT = T
\]
You can even express recursion using \(\lambda \)-calculus ...

\[
R \equiv (\lambda y. (\lambda x. y(xx))(\lambda x. y(xx)))
\]

- The basic idea is that \(R \) calls a function \(y \) then “regenerates” itself
- For example, applying \(R \) to a function \(F \) yields:

\[
\begin{align*}
R_F &= (\lambda y. (\lambda x. y(xx))(\lambda x. y(xx)))F \\
&= (\lambda x. F(xx))(\lambda x. F(xx)) \\
&= F((\lambda x. F(xx))(\lambda x. F(xx))) \\
&= F(R_F) \\
&= F(F(R_F)) \\
&= \text{and so on}
\end{align*}
\]

- Note in (4) that \(F(R_F) \) since \(R_F = (\lambda x. F(xx))(\lambda x. F(xx)) \) from (2)
- We can stop recursion using conditional functions (similar to Boolean ops)

Different paradigms, same power ...:

\(\lambda \)-calculus and Turing Machines have the same expressive power!
On to Haskell ...

Some of the major features of Haskell

1. A purely functional language
 - Only “pure” functions
 - In general, functions do not have side effects (do not modify state)
 - some nice features: memoization, recursion
 - Values (variables) are immutable
 - Functions (and operations) always produce entirely new values
 - This is very different than most other PLs

2. Static typing
 - All type checking done at compile time (statically)
 - Employs type inference (unobtrusive—w/out type annotations)

3. “Strong” typing
 - Guarantees a program cannot contain certain type errors
 - Haskell places limits on type conversion (implicit/explicit)
4. Functions are “first-class” objects
 - i.e., used just like any other kind of value in the language
 - e.g., functions can be defined that take functions as parameters (and call them in the function body)
 - Can create new functions during program execution
 - Can store functions in data structures
 - Can pass functions as arguments to other functions
 - Can return functions as values of other functions

5. Lazy evaluation
 - Defer computation until the result is needed
 - One benefit: possible performance gain (no needless computations)
 - e.g., using quicksort, can ask for first (first two, etc.) values, without sorting entire list
 - Another benefit: “infinite” data structures
 - and in particular, the ability to compute with them
 - somewhat similar to iterators (or streams)
 - Another benefit: programmer-defined control structures
 - e.g., short circuit evaluation of if-then-else
 - this means you don’t need special constructs for control flow

6. Expression-oriented
 - All statements return values (e.g., even if statements!)