Lecture 16:

e Associativity and Precedence

Announcements:
e HW-3 out

e Quiz 4 on Friday (AST creation, visitors)

CPSC 326 (Spring 2024) S. Bowers 1of6

More on Context Free Grammars

With recursive descent parsers, it can be hard to ...

e define grammars with appropriate operator associativity

e define grammars with appropriate operator precedence

e ... and these are important for semantic analysis (and evaluation)

Operator associativity

e many operators are left associative ... e.g., X, + +, —

e For example ... 40 - 10 =2 = (40 = 10) + 2
e Can be captured by the grammar rule:

e—>e—=+-n ... m a number

e and the "AST™

+ 2
/N
40 10
e But notice this requires ulineleft recursion! ... so not LL(k)

CPSC 326 (Spring 2024) S. Bowers 20f6

Dealing with left-associative operators

e One approach is to rewrite the AST after parsing

— similar to applying rotations in Red-Black or AVL trees

e Another is to modify the grammar and recursive-descent parser

e ... to construct the correct AST

Example:
The grammar rule (modified to be LL(k)) ...

e — n (DIVIDE n)*

e for left-associative ops use iteration (Kleene star) as above

e for right-associative ops use (tail) recursion (natural for recursive descent)
Modify the “normal” recursive descent function to build left-associative AST ...

def e(self):
expr_node = ValExpr(val=self.curr_token)
self.eat(TokenType.INT_VAL, '..."')
while self.match(TokenType.DIVIDE):
self.advance ()

sub_expr_node = ValExpr(val=self.curr_token)
self.eat(Token.INT_VAL, '...")

tmp = DivExpr(lhs=expr_node, rhs=sub_expr_node)
expr_node = tmp

return expr_node

CPSC 326 (Spring 2024) S. Bowers 30f6

Check In: Trace the code above and show the AST for 40 = 10 <+ 2.

The result is:
expr_node = ValExpr(40)

sub_expr_node = ValExpr(10),
expr_node = DivExpr(ValExpr(40), ValExpr(10))

sub_expr_node = ValExpr(2),
expr_node = DivExpr (DivExpr(ValExpr(40), ValExpr(10)), ValExpr(2))

CPSC 326 (Spring 2024) S. Bowers 4 of 6

Operator precedence

e Division (/) has higher precedence than addition (+)
e For example:

2+3/4=2+ 3/ 4
2/3+4=@2/ 3) + 4

One solution: Encode precedence in the grammar

e — ¢ (PLUS t)*

t — INT (DIVIDE INT)*

e This is equivalent to ...

e—>te

¢ — PLUSt € |e

t — INT ¢

t" — DIVIDE INT ¢’ | e

Exercise: Draw the parse treefor: 2 + 3 / 4 + 5

* Don’t need to consider associativity and precedence for HW-3
e but you should understand the issues and how to resolve them

e note it would be a good extension project

CPSC 326 (Spring 2024) S. Bowers 50f 6

Summary — Things to Know

1. Difference between operator associativity and precedence.
2. The issue/challenge with encoding associativity into a grammar.
3. Options for “dealing with” associativity in a recursive descent parser.

4. Given an example, generate a recursive descent function that correctly builds a
left-associative AST.

5. General approach for encoding precedence into a grammar.

6. Given an example, create a grammar that correctly encodes precedence.

CPSC 326 (Spring 2024) S. Bowers 6 of 6

