Today

- Quiz 6
- Functional Programming Intro (λ calculus)

Assignments

- HW5 due
- HW6 out (shortly)
Programming Paradigms

Imperative vs Declarative Languages

Imperative Languages: Programmers specify how to solve the problem and the system carries out the steps

Declarative Languages: Programmers specify what the solution should look like and the system determines how best to compute the solution

Logic and Functional languages are generally considered (more) declarative

- compared to object-oriented & procedural languages (C/C++/Python/Java/etc.)
- largely has to do with the underlying models of computation used
From Turing Machines to Imperative Programming

Turing Machines:

1. infinite tape divided into memory cells (one symbol per cell)
2. read/write head that can move left/right one cell at a time
3. state register that stores the current state of the machine
4. state transition table:
 state + curr head symbol \rightarrow write symbol + move head + new state

Example: replace a's with b's

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

the infinite tape

↑

$\{s_i\}$ the tape head (with the machine in state s_i)

Transition Table:

<table>
<thead>
<tr>
<th>Current State</th>
<th>Current Symbol</th>
<th>New Symbol</th>
<th>New State</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>Blank</td>
<td>Blank</td>
<td>s_2</td>
<td>Right</td>
</tr>
<tr>
<td>s_2</td>
<td>a</td>
<td>b</td>
<td>s_2</td>
<td>Right</td>
</tr>
<tr>
<td>s_2</td>
<td>b</td>
<td>b</td>
<td>s_2</td>
<td>Right</td>
</tr>
</tbody>
</table>

Turing Machines are imperative ...

- they specify how the computation should be carried out (very low level)
- close to how computers function and to many imperative languages
- tape stores data, state determines what operations occur, etc.
From λ-calculus to functional programming

Basic idea of λ-calculus

1. Unnamed, single-variable functions ("λ functions")
 - $\lambda x.x$ takes an x and returns an x
 - $\lambda x.(\lambda y.x)$ takes x and returns a function that takes y and returns x
 - shorthand for multi-argument functions: $\lambda xy.x$

2. Function application
 - $(\lambda x.x)0$ applies the identity function to 0 (resulting in 0)
 - $(\lambda x.(\lambda y.x))ab$ reduces to a ... $(\lambda x.(\lambda y.x))ab \Rightarrow (\lambda y.a)b \Rightarrow a$

3. Expressions
 - Either a function, an application, or a name (like x, a, 0, etc.)
 - A function has the form: $\lambda x.e$ where x is a name and e an expression
 - An application has the form: $e_1 e_2$ where both e's are expressions

Computation in λ-calculus is via function application

- Given a function application such as:
 $$(\lambda x.x)y$$

- An application is evaluated by substituting x's in the function body with y:
 $$\frac{(\lambda x.x)y = [y/x]x = y}{}$$
Substitutions give a way to simplify λ-expressions:

$$T \equiv \lambda xy.x \quad \text{ (True)}$$
$$F \equiv \lambda xy.y \quad \text{ (False)}$$

We can use these to define basic logical operators (AND, OR, NOT):

$$\land \equiv \lambda xy.xy(\lambda uv.v) \equiv \lambda xy.xyF$$
$$\lor \equiv \lambda xy.x(\lambda uv.u)y \equiv \lambda xy.xTy$$
$$\lnot \equiv \lambda x. x(\lambda uv.v)(\lambda ab.a) \equiv \lambda x.xFT$$

For Example:

$$T \land T = (\lambda xy.xyF)TT = (\lambda y.TyF)T = TTF = (\lambda xy.x)TF = T$$
$$T \land F = (\lambda xy.xyF)TF = (\lambda y.TyF)F = TFF = (\lambda xy.x)FF = F$$

Exercise 1: Evaluate the expressions:

$$F \land T = (\lambda xy.xyF)FT = (\lambda y.FyF)T = FTF = (\lambda xy.y)TF = F$$
$$F \land F = (\lambda xy.xyF)FF = (\lambda y.FyF)F = FFF = (\lambda xy.y)FF = F$$
$$F \lor T = (\lambda xy.xTy)FT = FTT = (\lambda xy.y)TT = T$$
$$\lnot T = (\lambda x.xFT)T = TFT = (\lambda xy.x)FT = F$$
$$\lnot F = (\lambda x.xFT)F = FFT = (\lambda xy.y)FT = T$$