
CPSC 326: Homework 2 Due By Mon., Feb. 19

Goals:

• Implement a basic recursive descent parser for MyPL (to check syntax but not build the AST);

• Practice working with and writing your own unit tests.

Instructions:

1. Use the GitHub Classroom link (posted in Piazza) to copy the starter code into your own
repository. Clone the repository in the directory where you will be working on the assignment.

2. Copy your homework files from HW-1, except for mypl.py, mypl, and hw1_tests.py, into your
repository. You must ensure that all files needed to run your code are added, committed, and
pushed to your repository. If the graders try to run your code and there are missing files
(which make it so that your parser can’t run), you will receive a 0 for the assignment.

3. Complete the functions marked with TODO in mypl_simple_parser.py. This includes defining
the additional functions needed to implement the recursive descent parser.

4. Ensure your code passes the unit tests provided in hw2_tests.py. (Note you will want to do
steps 3 and 4 iteratively.)

5. Ensure your parser implementation correctly handles the example file within the examples
subdirectory. Note that running ./mypl --parse over this file should result in no output
(implying the program is syntactically well formed).

6. Create additional interesting “positive” and “negative” expression tests in hw2_tests.py. See
the comments marked TODO in the file. Note that there are two separate locations in the file
to add the tests. You will need to add ten unit tests in total, five positive and five negative
tests. By interesting we mean that the tests should be non-trivial, different to existing tests
given, and be useful to ensure correctness of your implementation.

7. Copy the parser.mypl file, rename it to parser_error.mypl, save it in the main directory
of your repo (not in examples), and add a hard-to-find syntax error to it in the second half
of the file. When running ./mypl --parse on this new file, it should result in mypl finding
the syntax error.

8. Create a short write up as a pdf file named hw2-writeup.pdf. For this assignment, your write
up should provide a short description of any challenges and/or issues you faced in finishing
the assignment and how you addressed them along with a brief description of the unit tests
you created as well as the syntax error you added to your parser_error.mypl example file.

9. Submit your program by ensuring all of your code, test file, and writeup is pushed to your
GitHub repo. You can verify that your work has been submitted via the GitHub page for
your repo.

1



Additional Requirements: Note that in addition to items listed below, details will also be
discussed in class and in lecture notes.

1. Your recursive descent functions should generally follow the MyPL syntax rules given in the
lecture notes. It is okay to deviate slightly in terms of the choice of recursive descent functions,
but overall they should follow the general pattern described in class and induced by the
grammar.

2. Since the MyPL grammar requires more than one lookahead in a few places, you will need
to adapt some of your recursive descent functions respectively. In my implementation, e.g.,
there are a few functions that assume than an ID token has already been read.

3. You may not add additional helper functions in your implementation. You also cannot deviate
from the general recursive descent approach in your implementation (see point 1 above).

4. You must use the eat() helper function when necessary, but should not over use it. In many
cases advance() is all that is needed, namely, when you already know the type of token in
the stream (e.g., after a match() call).

5. You will need to allow yourself enough time to think through some of the trickier parts of the
parser. If you start this assignment too close to the deadline you will likely run out of time.

6. If you use any print statements for debugging, you must remove these from your final solution.
In addition, you must remove all commented out code from your final submission.

Homework Submission and Grading. Your homework will be graded using the files you have
pushed to your GitHub repository. Thus, you must ensure that all of the files needed to compile
and run your code have been successfully pushed to your GitHub repo for the assignment. Note
that this also includes your homework writeup. This homework assignment is worth a total of 40
points. The points will be allocated according to the following.

1. Correct and Complete (30 points). Your homework will be evaluated using a variety of
different tests (for most assignments, via unit tests as well as test runs using specific input
files). Each failed test will result in a loss of 2 points. If 15 or more tests fail, but some tests
pass, 6 points (out of the 30) will be awarded as partial credit. Note that all 30 points may
be deducted if your code does not run, large portions of work are missing or incomplete (e.g.,
stubbed out), and/or the specified techniques, design, or instructions were not followed.

2. Evidence and Quality of Testing (5 points). For each assignment, you must provide
additional tests that you used to ensure your program works correctly. Note that for most
assignments, a specific set of tests will be requested. A score of 0 is given if no additional
tests are provided, 1–4 points if the tests are only partially completed (e.g., missing tests) or
the tests provided are of low quality, and 5 if the minimum number of tests are provided and
are of sufficient quality.

2



3. Clean Code (2 points). In this class, “clean code” refers to consistent and proper code
formatting (indentation, white space, new lines), use of appropriate comments throughout the
code, no debugging output, no commented out code, meaningful variable names and helper
functions (if allowed), and overall well-organized, efficient, and straightforward code that uses
standard coding techniques. A score of 0 is given if there are major issues, 1 if there are minor
issues, and 2 if the “cleanliness” of the code submitted is satisfactory for the assignment.

4. Writeup (3 points). Each assignment will require you to provide a small writeup addressing
challenges you faced and how you addressed them as well as an explanation of the tests you
developed. Additional items may also be requested depending on the assignment. Homework
writeups do not need to be long, and instead, should be clear and concise. A score of 0 is
given if no writeup is provided, 1 if parts are missing, and 2 if the writeup is satisfactory.

3


