
CPSC 326: Homework 1 Due By Mon., Feb. 5

Goals:

• Implement the MyPL lexical analyzer;

• Practice working with unit tests.

Instructions:

1. Use the GitHub Classroom link (posted in Piazza) to copy the starter code into your own
repository. Clone the repository in the directory where you will be working on the assignment.

2. Complete the next_token() function in mypl_lexer.py.

3. Ensure your code passes the unit tests provided in hw1_tests.py. (Note you will want to do
steps 2 and 3 iteratively.)

4. Ensure your lexer implementation correctly handles the example files within the examples
subdirectory.

5. Create an additional example test file called hw1_example.mypl for this assignment and ensure
your program works correctly over the file. (Be sure to save this file in the main source code
directory to receive credit, not within the examples subdirectory.)

6. Create a short write up as a pdf file named hw1-writeup.pdf. For this assignment, your write
up should provide a short description of any challenges and/or issues you faced in finishing
the assignment and how you addressed them along with a brief description of the tests you
created in the example file.

7. Submit your program by ensuring all of your code, test file, and writeup is pushed to your
GitHub repo. You can verify that your work has been submitted via the GitHub page for
your repo.

Additional Requirements: Note that in addition to items listed below, details will also be
discussed in class and in lecture notes.

1. It is fine to implement the next_token() function without breaking it into separate helper
functions (i.e., you can have it be one large function). However, if you would like to “modu-
larize” it, you are welcome to. If you do break it out into helper functions, you must explain
how you did this in your writeup.

2. You must implement your next_token() function by reading one character at a time via the
read() and peek() helper functions provided in the Lexer class. In addition, to report errors,
you must use the error() helper function provided by the Lexer class. The eof() file is also
provided to help you check for an EOF (end of file) character.

1



3. Python provides some useful helper functions for checking for specific types of characters. In
particular, I used the isspace() (check for whitespace, which includes newlines, tabs, and so
on), isdecimal() (to check for a digit in our case), and isalpha() (to check for a letter in
our case) functions. Note these are called on a string. Since we are reading one character at
a time, where the next character is held in the ch variable, you would write ch.isspace(),
e.g., to call the helper function.

4. The full set of token types for MyPL are provided in the mypl_token.py file. Note that your
next_token() function is creating and returning Token objects with these listed types.

5. Note that next_token() uses an iterator, i.e., stream-based, model. This means that one call
to next_token() returns only the next token in the input. The Lexer object maintains state,
including where it is in the current input (to be able to return the next token in the input,
and so on).

6. The Lexer class maintains line and column member variables. These variables are to keep
track of the current line and column for building tokens. Your next_token() function will
need to update these member variables and also use them to build up new token objects.

7. Each token should have a non-empty lexeme. For tokens with “unimportant” lexemes, you
can just use their corresponding symbol. For example, the lexeme for + should be "+" and
the lexeme for int should be "int".

8. The hello.out and tokens.out files within the example subdirectory give examples of what
your results for running ./mypl --lex on the files should be. Your program must output the
exact same information as what is in these files to be considered correct. Note that additional
example input files are also included, which will also be used as tests of your program.

9. A non-comprehensive set of unit tests are provided in the file hw1_tests.py. To run these
tests, simply type pytest hw1_tests.py at the command line. (Note that many IDEs, in-
cluding VS Code, provide integrated support for pytest, but using this is not requried.) Your
implementation will need to pass all of the unit tests from hw1_tests to be considered cor-
rect. Additional options for pytest that are useful include pytest -v, which expands the
description of each test, and -x to exit instantly on the first error or failed test (which reduces
output as you are trying to get tests to pass). Many more options are available and can be
seen using the -h option.

Hints and Tips:

1. The basic layout for next_token() that I used in my implementation is, in order: (1) read all
whitespace (checking for EOF); (2) check for EOF; (3) check for single character tokens (e.g.,
arithmetic operators, punctuation, etc.); (4) check for the trickier symbols that can involve or
require two characters (e.g., < vs <=, !=, and so on); (5) check for string values; (6) check for
integer and double values; (7) check for reserved words; and then (8) identifiers. Again, it is
much easier to do this incrementally as opposed to all at once and then try to debug.

2



2. You are encouraged (but not required) to create your own unit tests. Note that the unit tests
provided are not guaranteed to be comprehensive. As mentioned in the hw1_tests.py file,
just because your program passes the unit tests does not mean your code is correct!

Homework Submission and Grading. Your homework will be graded using the files you have
pushed to your GitHub repository. Thus, you must ensure that all of the files needed to compile
and run your code have been successfully pushed to your GitHub repo for the assignment. Note
that this also includes your homework writeup. This homework assignment is worth a total of 40
points. The points will be allocated according to the following.

1. Correct and Complete (30 points). Your homework will be evaluated using a variety of
different tests (for most assignments, via unit tests as well as test runs using specific input
files). Each failed test will result in a loss of 2 points. If 15 or more tests fail, but some tests
pass, 6 points (out of the 30) will be awarded as partial credit. Note that all 30 points may
be deducted if your code does not run, large portions of work are missing or incomplete (e.g.,
stubbed out), and/or the specified techniques, design, or instructions were not followed.

2. Evidence and Quality of Testing (5 points). For each assignment, you must provide
additional tests that you used to ensure your program works correctly. Note that for most
assignments, a specific set of tests will be requested. A score of 0 is given if no additional
tests are provided, 1–4 points if the tests are only partially completed (e.g., missing tests) or
the tests provided are of low quality, and 5 if the minimum number of tests are provided and
are of sufficient quality.

3. Clean Code (2 points). In this class, “clean code” refers to consistent and proper code
formatting (indentation, white space, new lines), use of appropriate comments throughout the
code, no debugging output, no commented out code, meaningful variable names and helper
functions (if allowed), and overall well-organized, efficient, and straightforward code that uses
standard coding techniques. A score of 0 is given if there are major issues, 1 if there are minor
issues, and 2 if the “cleanliness” of the code submitted is satisfactory for the assignment.

4. Writeup (3 points). Each assignment will require you to provide a small writeup addressing
challenges you faced and how you addressed them as well as an explanation of the tests you
developed. Additional items may also be requested depending on the assignment. Homework
writeups do not need to be long, and instead, should be clear and concise. A score of 0 is
given if no writeup is provided, 1 if parts are missing, and 2 if the writeup is satisfactory.

3


