Today

• Keys and BCNF

Assignments

• HW7 out
• Proj 1 out
• Quiz on Tues
• Exam 2 on Tues, Nov 13th (1.5 weeks)
From Last Time ... FD Inference Rules

• F^+ can be computed using these axioms

 – **Reflexivity**: if $Y \subseteq X$, then $X \rightarrow Y$
 – **Augmentation**: if $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z
 – **Transitivity**: if $X \rightarrow Y$ and $Y \rightarrow Z$ then $X \rightarrow Z$

• Apply these rules repeatedly to F until we no longer produce any new FDs

• This is a “sound” and “complete” inference procedure

 – Soundness: Only FDs in F^+ are generated
 – Completeness: Generates all FDs in F^+
Finding Keys

We often need to determine if some set of attributes is a key

- given an FD $X \rightarrow Y$, is X a (super)key?
- given a set of FDs for R, what is the key of R?

We can determine if a set X of attributes is a key by computing X^+

Compute X^+ from $X

1. Let $X^+ = X$
2. Repeat until no change in X^+
3. For each $Y \rightarrow Z$ in FD’s and $Y \subseteq X^+$
4. $X^+ = X^+ \cup Z$
5. Return X^+

If A is the set of attributes for R, X is a key for R iff $X^+ = A$
Example:

- Given the schema \(R(a, b, c, d, e) \) such that:

 - \(bc \rightarrow a \)

 - \(de \rightarrow c \)

 - \(a \rightarrow bcde \) (since \(a \) is a key)

Q: Is \(bc \) a key of \(R \)?

- \(bc \rightarrow a \) is given

- since \(a \) is a key, we have \(a \rightarrow abcde \) ... \(a \rightarrow a \) by reflexivity

- \(bc \rightarrow abcde \) ... by transitivity

- thus \(bc \) is a key! ... since \(abcde \) are all attributes in \(R \)

Every non-key FD is associated with some redundancy

- Our plan is to use non-key and non-trivial FDs to decompose our tables

- This will result in our tables being in a “normal form”
Boyce-Codd Normal Form (BCNF)

A relation is in BCNF if all of its FDs are either

- **Trivial FDs** (e.g., \(AB \rightarrow A\))

or

- **Key FDs** (of the form \(A \rightarrow B\) for a key \(A\))

Are any of these relations are in BCNF? (Why or why not...)

- **EmpDept(eid, name, dept, dept_name)**
- **Assigned(eid, pid, emp_name, percent)**
- **Enrollment(sid, cid, grade, instructor, student_name, instr_name)**

BCNF relations have no redundancy caused by FDs

- redundancy if there is an FD between attributes

- and there can be repeated entries of data for those attributes

- for example:

<table>
<thead>
<tr>
<th>dept</th>
<th>dept_name</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>CS</td>
</tr>
<tr>
<td>10</td>
<td>HR</td>
</tr>
<tr>
<td>12</td>
<td>CS</td>
</tr>
</tbody>
</table>

- if a relation is in BCNF, the FD must be a key FD

- in the example dept must be a key

- which implies, e.g., \((12, CS)\) can only appear once
Decomposition into BCNF

A BCNF decomposition algorithm for a relation R (assuming F^+)

1. If $R(A)$ is not in BCNF and $X \rightarrow Y$ is a non-trivial, non-key FD of R
2. Decompose R into $R_1(A - Y)$ and $R_2(X \cup Y)$
3. If $R_1(A - Y)$ and/or $R_2(X \cup Y)$ is not in BCNF
4. recursively apply step 1 (to R_1 and/or R_2)

Exercise

Q: Decompose the following into BCNF relations ...

Q: Write an SQL query to “get back” the original table ...

Enrollment(sid, cid, grade, instructor, student_name)

- Start with the non-key FD: sid → student_name
- This gives the decomposition:
 Enrollment(sid, cid, grade, instructor)
 Student(sid, student_name)
- Now use the non-key FD: cid → instructor
- This gives the decomposition:
 Enrollment(sid, cid, grade)
 Student(sid, student_name)
 Instructor(cid, instructor)
- All relations are now in BCNF!
Where are we?

We’ve accomplished a lot!

- began with a relational schema
- identified problems with redundancy (anomalies)
- used FDs to eliminate those problems via decompositions to BCNF
- on the way learned how to identify keys using FDs

There are two steps left...

- ensure the BCNF decompositions do not lose information (“lossy”)
- in some cases we may lose FDs, but there are ways to deal with this
Lossless Decomposition

• Assume a schema is decomposed into two attribute sets A_1 and A_2

• A decomposition is “lossless” if for every instance R of the original schema

\[
R = \text{SELECT } * \\
\text{FROM (SELECT } A_1 \text{ FROM } R) \\
\text{NATURAL JOIN} \\
(\text{SELECT } A_2 \text{ FROM } R)
\]

• That is, we can recover R from the natural join of the decomposition

Example

Enrollment

<table>
<thead>
<tr>
<th>sid</th>
<th>cid</th>
<th>instructor</th>
<th>student_name</th>
<th>instructor_name</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>001</td>
<td>1</td>
<td>alice</td>
<td>bob</td>
</tr>
<tr>
<td>246</td>
<td>002</td>
<td>2</td>
<td>charlie</td>
<td>diane</td>
</tr>
</tbody>
</table>

Q: Is $A_1 = \{\text{sid, student_name}\}$ and $A_2 = \{\text{cid, instructor, instructor_name}\}$ a lossless decomposition?

– No!
– The NATURAL JOIN is just the CROSS JOIN

Q: How can we change this decomposition to make it lossless?

– In this case, need to leave the key in one of the tables
Generating Lossless Decompositions

- Decomposing a table into attribute sets A_1 and A_2 is lossless iff $A_1 \cap A_2$ contains a key for either A_1 or A_2
 - if they have a key in common, they can be joined back together
 - $\{\text{sid, student_name}\} \cap \{\text{cid, instructor, instructor_name}\} = \emptyset$

Q: Does the BCNF algorithm guarantee lossless decompositions?

- Yes!
- Assume A is the set of attributes
- For FD $X \rightarrow Y$, we have: $A_1 = A - Y$ and $A_2 = X \cup Y$
- Thus $A_1 \cap A_2 = X$ and X is a key for $X \cup Y$
Dependency-Preserving Decompositions

Decompositions should also preserve dependencies

- For example:

 \[\text{Employee}(\text{eid}, \text{address}, \text{city}, \text{state}, \text{zip}) \]
 \[
 \begin{align*}
 &- \text{zip} \rightarrow \text{state} \quad \text{(note not totally accurate)} \\
 &- \text{address, city, state} \rightarrow \text{zip}
 \end{align*}
 \]

- A possible decomposition

 \[\text{Employee}(\text{eid}, \text{address}, \text{city}, \text{zip}) \]
 \[\text{ZipState}(\text{zip}, \text{state}) \]

- While in BCNF, it does not preserve the FD:

 \[- \text{address, city, state} \rightarrow \text{zip} \]

- In the example, we could wind up with this

 \[
 \begin{array}{cccc}
 \text{Employee} & | & \text{ZipState} \\
 \hline
 \text{eid} & \text{address} & \text{city} & \text{zip} & \text{zip} & \text{state} \\
 123 & 111 \text{ 1st Ave} & \text{Spokane} & 99202 & 99203 & \text{WA} \\
 456 & 111 \text{ 1st Ave} & \text{Spokane} & 99258 & 99258 & \text{WA} \\
 \end{array}
 \]

- We’ve lost the ability to enforce the FD: address, city, state \(\rightarrow \) zip
Dependency Preserving Decompositions

Defining “dependency preserving”

- Let F be the FDs of a relation R
- Let A and B be sets of attributes in R

- An FD $X \rightarrow Y$ is “in A” if all attributes of X and Y are in A

- The “projection F_A” of F on attributes A are the FDs in A

- Assume R is decomposed into sets of attributes A and B
- The decomposition is “dependency preserving” if $(F_A \cup F_B)^+ = F^+$
 - Essentially, can we get F back from just F_A and F_B

Example

- $F = \{\text{address, city, state} \rightarrow \text{zip, zip} \rightarrow \text{state}\}$

Q: If $A = \{\text{eid, address, city, zip}\}$ and $B = \{\text{zip, state}\}$, what are F_A and F_B?
 - $F_A = \emptyset$ neither FD is in A
 - $F_B = \{\text{zip} \rightarrow \text{state}\}$

- In this case, $(F_A \cup F_B)^+$ cannot equal F^+ since $F_B^+ \neq F^+$
- And so this decomposition is not dependency preserving!