Today

- Onto 3NF

Assignments

- HW 8, Proj 1 due
- HW 9, PROJ 2 out, due Tues
- Exam 2 next Thurs
Dependency-Preserving Decompositions

Decompositions should also *preserve dependencies*

- For example:

 Employee(eid, address, city, state, zip)

 - zip → state
 - address, city, state → zip

 (note not totally accurate)

- A possible decomposition

 Employee(eid, address, city, zip)

 ZipState(zip, state)

- While in BCNF, it does not preserve the FD:

 - address, city, state → zip

- In the example, we could wind up with this

 Employee | ZipState
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>eid</td>
<td>address</td>
<td>city</td>
<td>zip</td>
<td>zip</td>
<td>state</td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>111 1st Ave</td>
<td>Spokane</td>
<td>99202</td>
<td>99202</td>
<td>WA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>456</td>
<td>111 1st Ave</td>
<td>Spokane</td>
<td>99258</td>
<td>99258</td>
<td>WA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 We’ve lost the ability to enforce the FD: address, city, state → zip
Dependency Preserving Decompositions

Defining “dependency preserving”

- Let \(F \) be the FDs of a relation \(R \)
- Let \(A \) and \(B \) be sets of attributes in \(R \)

- An FD \(X \rightarrow Y \) is “in \(A \)” if all attributes of \(X \) and \(Y \) are in \(A \)

- The “projection \(F_A \)” of \(F \) on attributes \(A \) are the FDs in \(A \)

- Assume \(R \) is decomposed into sets of attributes \(A \) and \(B \)
- The decomposition is “dependency preserving” if \((F_A \cup F_B)^+ = F^+\)

 – Essentially, can we get \(F \) back from just \(F_A \) and \(F_B \)

Example

- \(F = \{\text{address, city, state } \rightarrow \text{zip, zip } \rightarrow \text{state}\} \)

Q: If \(A = \{\text{eid, address, city, zip}\} \) and \(B = \{\text{zip, state}\} \), what are \(F_A \) and \(F_B \)?

 – \(F_A = \emptyset \) neither FD is in \(A \)

 – \(F_B = \{\text{zip } \rightarrow \text{state}\} \)

- In this case, \((F_A \cup F_B)^+ \) cannot equal \(F^+ \) since \(F_B^+ \neq F^+ \)
- And so this decomposition is not dependency preserving!
Third Normal Form (3NF)

Some schemas do not have both:

- a lossless decomposition
- and a dependency preserving decomposition into BCNF schemas

But, every schema has a lossless dep.-preserving decomposition into 3NF

A schema \(R \) is in 3NF if for every FD \(X \rightarrow Y \), either:

- \(X \rightarrow Y \) is a trivial FD (\(Y \subseteq X \)) from BCNF
- \(X \rightarrow Y \) is a key FD (\(X \) is a superkey) from BCNF
- \(Y \) is a part of some key for \(R \) not allowed in BCNF

Thus 3NF subsumes BCNF (every BCNF schema is also in 3NF)

Q: How could you decompose Employee into 3NF?

Employee(eid, address, city, state, zip)

- \(F = \{ \text{address, city, state} \rightarrow \text{zip}, \text{zip} \rightarrow \text{state} \} \)

- Use the FD address, city, state \(\rightarrow \) zip to obtain:

 Employee(eid, address, city, state)
 Location(address, city, state, zip)

 - This is a lossless decomposition Why?
 - This is a dependency preserving decomposition Why?
 - But it is in 3NF because of the FD zip \(\rightarrow \) state
 - Is zip \(\rightarrow \) state enforced by the DBMS? No!
Canonical Covers and 3NF

Consider this example

\[R(a, b, c, d, e) \]

\[F = \{ ab \rightarrow cde, a \rightarrow c, b \rightarrow d, d \rightarrow e \} \]

Q: What additional dependencies to we get when computing \(F^+ \)?

- The main one: \(b \rightarrow e \) (transitivity)

Q: Is there a non dependency-preserving decomposition into BCNF?

- Yes ...
- Step 1: Using \(a \rightarrow c \)
 \[R(a, b, d, e), R1(a, c) \]
- Step 2: Using \(b \rightarrow d \)
 \[R(a, b, e), R1(a, c), R2(b, d) \]
- Step 3: Using \(b \rightarrow e \)
 \[R(a, b), R1(a, c), R2(b, d), R3(b, e) \]
- Note that \((F_R \cup F_{R1} \cup F_{R2} \cup F_{R3})^+ \) does not contain \(d \rightarrow e \)
- Note also that other decompositions into BCNF are dependency preserving
 \(a \rightarrow c, d \rightarrow e \), then \(b \rightarrow d \)
Let's create a 3NF decomposition for this example ...

We first have to compute a canonical cover F_c of F

- A set of dependencies “logically equivalent” to F such that:
 - no functional dependency in F_c contains an “extraneous” attribute
 - each left side of an FD is unique

Extraneous attributes

- if we can remove the attribute from a dependency in F
- without changing the closure of F

A cover for the example

- Start with:
 - $ab \rightarrow cde$
 - $a \rightarrow c$
 - $b \rightarrow d$
 - $d \rightarrow e$
 - $b \rightarrow e$

- Combine common left-hand sides:
 - $ab \rightarrow cde$
 - $a \rightarrow c$
 - $b \rightarrow de$
 - $d \rightarrow e$

- Remove extraneous attributes
- ab \rightarrow \emptyset \\
- a \rightarrow c \\
- b \rightarrow d \\
- d \rightarrow e \\

(a \rightarrow c, b \rightarrow d e)