Today:

- Join algorithms
Join Algorithms

A new schema

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

Consider this query

SELECT *
FROM Reserves R, Sailors S
WHERE R.sid = S.sid

• In relational algebra: Reserves $\bowtie_{sid=sid}$ Sailors

Assumptions:
• M pages in R
• P_R tuples per page in R
• N pages in S
• P_S tuples per page in S
Simple Nested-Loop Join

1. foreach tuple \(r \in R \)
2. foreach tuple \(s \in S \)
3. if \(r.sid == s.sid \)
4. add \(< r, s >\) to result

- We call \(R \) the “outer” relation
- We call \(S \) the “inner” relation

How does it work?

- For each tuple in the outer relation \(R \)
- We **scan** the entire inner relation \(S \) tuple-by-tuple

Q: What does it cost?

- Assume: \(^1\)
 - \(M = 1000 \) pages (in \(R \)), \(P_R = 100 \) tuples/page
 - \(N = 500 \) pages (in \(S \)), \(P_S = 80 \) tuples/page
 - 100 I/Os per second
- What is the cost of \(R \bowtie S \)?
 - Read all pages of \(R \) and for each \(R \) tuple, read in each page of \(S \)
 - \(M + (P_R \times M) \times N = 1000 + 100 \times 1000 \times 500 \) I/Os
 - \(50,001,000 \) I/Os = 500,010 seconds \(\approx 5.8 \) days!

\(^1\)if a page is 1 Kb, then \(M \) is 1 Mb ... with 100 tuples per page though, this is only 10 bytes per tuple
Nested-loop Join in pictures ...

Table 1 on Disk

| 2, ... |
| 6, ... |
| 3, ... |

| 1, ... |
| 5, ... |
| 9, ... |

Memory Buffers:

Table 2 on Disk

| ... 2 |
| ... 7 |

| ... 6 |
| ... 9 |

| ... 1 |
| ... 5 |

Table 1 on Disk

| 2, ... |
| 6, ... |
| 3, ... |

| 1, ... |
| 5, ... |
| 9, ... |

Memory Buffers:

Table 2 on Disk

| ... 2 |
| ... 7 |

| ... 6 |
| ... 9 |

| ... 1 |
| ... 5 |

Query Answer:

MATCH!

2, 2
Table 1 on Disk

<table>
<thead>
<tr>
<th>2, …</th>
<th>6, …</th>
<th>3, …</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, …</td>
<td>5, …</td>
<td>9, …</td>
</tr>
</tbody>
</table>

Memory Buffers:

- NO MATCH
- Discard!

Table 2 on Disk

| …, 2 |
| …, 7 |

| …, 6 |
| …, 9 |

| …, 1 |
| …, 5 |

Query Answer:

2, … 2

- And so on ...
Page-Oriented Nested-Loop Join

1. foreach page of tuples in \(R \)
2. foreach page of tuples in \(S \)
3. foreach record \(r \) and \(s \) in memory
4. if \(r.sid == s.sid \)
5. add \(< r, s > \) to result

Q: What does it cost?

- Again assume:
 - \(M = 1000 \) pages (in \(R \)), \(P_R = 100 \) tuples/page
 - \(N = 500 \) pages (in \(S \)), \(P_S = 80 \) tuples/page
 - 100 I/Os per second

- What is the cost of \(R \bowtie S \)?
 - \(M + M \times N = 1000 + 1000 \times 500 \) I/Os
 - \(501,000 \) I/Os = 5,010 seconds \(\approx 1.4 \) hours!

- What is the cost of \(S \bowtie R \)?
 - \(N + N \times M = 500 + 500 \times 1000 = 500,500 \) I/Os
 - We typically will use smaller relation as the outer relation

- What does nested-loop join cost for \(S \bowtie R \)?
 - \(N + (P_S \times N) \times M = 500 + (80 \times 500) \times 1000 = 40,000,500 \) I/Os
 - So about 400,005 seconds (or about 4.6 days)
Page-oriented nested-loop join In pictures ...

• load a page from table 1 and a page from table 2
• try all combinations of records

• continue using another page from table 2
• and so on until all page combinations tried
“Block” nested-loop join: Use more buffers

1. assuming B pages of memory in buffer
2. assign one page of buffer to output
3. load $B - 2$ pages of tuples from R
4. load 1 page of tuples from S
5. foreach record r and s in memory
 6. if $r.sid == s.sid$
 7. add $< r, s >$ to result

Q: What does it cost?

- Again assume:
 - $M = 1000$ pages (in R), $P_R = 100$ tuples/page
 - $N = 500$ pages (in S), $P_S = 80$ tuples/page
 - 100 I/Os per second

- Also assume:
 - $B = 52$

- What is the cost of $R \bowtie S$?
 - $M + (M/(B - 2)) \times N = 1000 + (1000/50) \times 500$ I/Os
 - 11,000 I/Os = 110 seconds ≈ 1.8 minutes!

- What is the cost of $S \bowtie R$?
 - $N + (N/(B - 2)) \times M = 500 + (500/50) \times 1000$ I/Os
 - 10,500 I/Os = 105 seconds ≈ 1.75 minutes!
Indexed nested-loop join

1. assuming there is an index on $S.sid$
2. foreach record $r \in R$
3. find tuples $s \in S$ with matching search key
4. foreach matching s
5. add $< r, s >$ to result

Q: What does it cost?

- Again assume:
 - $M = 1000$ pages (in R), $P_R = 100$ tuples/page
 - $N = 500$ pages (in S), $P_S = 80$ tuples/page
 - 100 I/Os per second

- Also assume:
 - it costs 3 I/Os to find matching tuples in the index

- What is the cost of $R \bowtie S$?
 - $M + (M \times P_R) \times 3 = 1000 + (1000 \times 100) \times 3 = 3,010$ I/Os
 - 301,000 I/Os $= 3,010$ seconds ≈ 50 minutes!

- What is the cost of $S \bowtie R$?
 - $N + (N \times P_S) \times 3 = 500 + (500 \times 80) \times 3 = 1205$ I/Os
 - 120,500 I/Os $= 1205$ seconds ≈ 20 minutes!

- again, pick the smaller outer relation (fewest records)
Merge Join

If each relation is sorted on the join attributes:

- Cost of joining R and S can be reduced to $M + N!$... best case
 1. compare 1st record in R with 1st record in S
 2. if they match, output $<r,s>$
 3. otherwise discard smallest and repeat

What if the relations aren’t sorted on the join attributes?

- **Challenge**: The tables do not fit into memory!
- **Solution**: Use external sorting!

Q: How else can we sort? ... using a (clustered) B+ Tree
Q: What if the B+ Tree is unclustered? ... can incur many I/Os to sort
 – in fact, up to 1 I/O per record!

- We’ll see other operator implementations that also use sorting
N-Way External Sorting

Basic idea
- Modify the mergesort algorithm to work over file pages
- Create a “sorted run” (set of small sorted files)
- Do an “N-way merge” of the sorted sub files

Creating a sorted run
1. Read in \(B \) pages into memory
2. Sort data in buffer pages on join attribute (search key)
3. Write result back out to disk

Doing an N-way merge
- In mergesort, we merge two sub-lists at a time
- Here we merge \(N = B - 1 \) pages (sub-lists) at a time
- One buffer page used for output
Example

Assume $B = 4$ (4 buffer pages)

- First sort pass ... create sorted runs
 - load all pages, sort, write out as sorted sub-files
 - each sorted sub-file is at most B pages in size

New File of 3 sorted sub-files
• First **merge** pass ... merge $B - 1$ of the sorted sub files

Buffer

Load Buffer

In this case 3-way merge

Buffer

Output 1st Page

In this case 3-way merge

In this case 3-way merge

Buffer

Load Buffer Again

In this case 3-way merge

Output 2nd Page

In this case 3-way merge

- And so on until N subfiles are sorted
Additional notes on N-Way External Sorting

- merge may require multiple passes (like in plain-old mergesort)
- each merge pass reduces the number of sub-files by \(B - 1 \)

How much does it cost?

- On each pass:
 - cost is \(2 \times M \) I/Os (for \(M \) pages in table)
 - that is, must read and write entire file (all pages) in each pass
 - so the question is how many passes are needed?
 - note: sometimes \(2 \times M - 1 \) on a pass (but ignore this case)

- Number of merge passes depends on \(B \) (buffer space available)
 - \(\text{Passes} = \lceil \log_{B-1}(M/B) \rceil \) \(\ldots \) why \(M/B \) ?
 - Can sort 100 million pages in 4 passes w/ 129 pages of memory
 - Can sort \(M \) pages using \(B \) buffer pages in 2 passes if \(\sqrt{M} < B \)
Example

- Assume we want to sort R where:
 - $M = 1000$
 - 100 I/Os per second
 - $B = 52$
 - Total cost: $2 \times 1000 + 2 \times 1000 \times \lceil \log_{51}(1000/52) \rceil = 4000$ I/Os
 - Note we can simplify the formula: $2 \times M \times (\lceil \log_{B-1}(M/B) \rceil + 1)$
Merge Join (cont.)

Basic idea:

1. Sort R on join attribute (if not already sorted)
2. Sort S on join attribute (if not already sorted)
3. Merge R and S (to perform join)
4. scan each R until an r-tuple \geq current s-tuple
5. if r-tuple == s-tuple, output match
6. then scan S until an s-tuple \geq current r-tuple
7. if s-tuple == r-tuple, output match
8. Continue until run out of tuples in R or S

Outer relation R is scanned once

- each time an r-tuple matches first s-tuple
- we form a "group" of s-tuples that match r
- each such group is scanned once per matching r-tuple
- either:
 - this group fits into memory (the scan is “free”)
 - or we have extra page I/Os (to reread the group)
Cost of Merge Join

Best-case cost (all matches in memory)

- (cost to sort R) + (cost to sort S) + ($M + N$)

Worst-case cost (all R and S have same value)

- matching group is the entire S relation
- (cost to sort R) + (cost to sort S) + $M + M \times N$

- which is worse than page-oriented nested-loop (must sort R and S)

Example

- Assume:
 - $M = 1000$ pages (in R), $P_R = 100$ tuples/page, unsorted
 - $N = 500$ pages (in S), $P_S = 80$ tuples/page, unsorted
 - 100 I/Os per second
 - $B = 52$

- What is the cost of $R \bowtie S$ (best case)
 - Sorting R: 4000 I/Os
 - Sorting S: $2 \times 500 \times ([\log_{51}(500/52)] + 1) = 2000$
 - Total cost: $4000 + 2000 + 1000 + 500 = 7500$ page I/Os
 - **1.25 minutes**!
Hash Join

Hash indexes: Basic idea

- A hash function h maps keys k to pages
- So, data entry k^* is found on page $h(k)$
- Number of primary pages (buckets) fixed ... in static hashing
 - allocated sequentially
 - not de-allocated (don’t grow and shrink)
 - overflow pages (buckets) are used as needed
- Large overflow buckets can degrade performance
 - based on search key values, hash function, number of primary buckets
Hash Join: Simple case

- Entire S table fits into memory
- Build an in-memory hash index for S ("build" phase)
- Scan R and find matching S-records ("probe" phase)
 - identical to indexed nested-loop join

Q: What is the cost?
 - Cost to read R (outer relation)
 - Cost to read S (build phase of inner relation)
 - Each time we read a page in R we find all matches with S (in memory)
 - So total cost is only $M + N$... no overflow buckets

This is too easy!

- What do we do if S does not fit in memory?
 - We "partition" S into smaller sets of records that fit in memory
 - Do simple case (indexed nested-loop join) on partitions
Hash Join: Harder case

- Define a hash function \(h \) that can be used to partition \(R \) and \(S \)
- Each \(S \) partition should be small enough to fit into main memory
- Apply \(h \) to \(R \) and \(S \) and store each resulting partition in a file
- Do the simple case on each pair of matching partitions (files)
Q: What is the cost?

- $2 \times M$ to partition R (read and write)
- $2 \times N$ to partition S (read and write)
- Cost to join partitions: $M + N$
- Total cost: $3 \times (M + N)$

• In our example:
 - $3 \times (1000 + 500) = 4500$ I/Os ≈ 45 seconds
Merge Join vs. Hash Join

Merge Join

- less sensitive to data “skew” (clusters of similar values)
- result is sorted (more later)

Hash Join

- highly parallelizable (join partitions concurrently)

For inequality conditions (e.g., \(r1.age < r2.age \))

- neither hash or merge join applicable
- block nested-loop likely best approach
- index nested-loop also possible (B+ tree)
Summary of Join Algorithms

And the winner is ... (for $R \bowtie S$)

<table>
<thead>
<tr>
<th>Join Algorithm</th>
<th>I/Os</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple nested-loop</td>
<td>50,001,000</td>
<td>5.8 days</td>
</tr>
<tr>
<td>Page-oriented nested-loop</td>
<td>501,000</td>
<td>1.4 hours</td>
</tr>
<tr>
<td>Block nested-loop</td>
<td>11,000</td>
<td>1.8 minutes</td>
</tr>
<tr>
<td>Index nested-loop</td>
<td>301,000</td>
<td>50 minutes</td>
</tr>
<tr>
<td>Merge join</td>
<td>7,500</td>
<td>1.25 minutes</td>
</tr>
<tr>
<td>Hash join</td>
<td>4,500</td>
<td>45 seconds</td>
</tr>
</tbody>
</table>