CPSC 223
Algorithms & Data Abstract Structures

Lecture 21:
Red-black tree
2-3 trees

Today …
• Red-Black Trees (cont.)
• 2-3 Trees (if time) [Ch 12: 651-670]
Balance Constraints

1. Every node is assigned a color (either Red or Black)
2. The root is always Black
3. The children of a Red node are always Black
4. Every path from the root to a NULL node has the same number of Black nodes

Inserting Nodes (Bottom Up)

If the inserted node’s parent is Red …
• We have to consider several cases
 – Let …
 \(X \) = inserted node
 \(P \) = parent
 \(S \) = sibling of \(P \)
 \(G \) = grandparent of \(X \)
 – Note that \(G \) must be Black!
• If \(S \) is Red
• If \(S \) is Black
 – If \(X \) is an outside grandchild
 – If \(X \) is an inside grandchild

NOTE: Because we are possibly propagating up, we consider the general case where \(X \) may have subtrees \(A \) and \(B \)
Sibling is Red

- If S is Red
 - Change P and S to Black
 - Change G to Red
 - Repeat with G as the new X

Outside Grandchildren

If S is Black and X is an outside grandchild
 - “Outside” grandchild means X is left-left or right-right

- Do a single rotation to the right (i.e., with G’s left)
- Change G to Red and P to Black
- We are done … Why?
 - The original root (G) was Black

This case assumes the children of X are Black (i.e., X is an internal node)
Inside Grandchildren

If S is Black and X is an inside grandchild

- “Inside” grandchild means X is left-right or right-left

• Do a double rotation
• Change X to Black and G to Red
• We are done rebalancing

Inserting Nodes Top Down

• We want to avoid having to rotate “up” the tree
 - We don’t need to when S is Red
• To avoid iterating back up the tree, we make sure that when we insert a node, the sibling S is not Red

• One the way down
 - As we see a node X with two Red children …
 - we change X to Red and its children to Black (color flip)
 - If X and X's parent are Red, we apply single or double Rotation

 - While this increases the total number of Black nodes … it does not change the number of Black nodes on a path
Inserting Nodes Top Down

- For example, let's insert “9” into this tree

Start Here ➔ 30

15

10

8

12

Traverse Here ➔ 15

30

70

10

25

8

12

Now we need to do a
Single Rotation at “30” ...
Inserting Nodes Top Down

- For example, let’s insert “9” into this tree

We’re here →

15
10
8 12 25 70

Traverse here →

15
10
8 12 25 70
9

And insert “9”

Removing Nodes

- Recall that in a binary search tree we only remove the inorder successor
 - Copying the inorder successor does not violate the Red Black constraints
 - Removing the inorder successor might

- Simple cases:
 - If the node is Red, we can just remove it
 - If it is Black with a Red child … remove it and change the child’s color to Black
Removing Nodes

• Simple cases:
 – If the node is Red, we can just remove it
 – If it is Black with a Red child … remove it and change the child’s color to Black

![Diagram of simple cases](image1)

Remove X
NOTE: P must be Black

Remove X
Change N to Black

Removing Nodes

• The complicated case
 – The node X (to be deleted) and its child are Black
 – In this case, we end up with one fewer Black node on a path … and so the tree must be re-balanced
 – First, delete X and replace with inorder successor N
 – Now we need to rebalance N

![Diagram of complicated case](image2)

Remove X
(the inorder successor)
Removing Nodes – Bottom Up

• **Case A**: If \(N \) is the new root of the tree we are done
• **Case B**: The sibling \(S \) is Red
 – Flip colors of \(P \) and \(S \)
 – Rotate left at \(P \)
 – Now rebalance \(N \) with Cases D, E, or F

![Diagram showing Case A and Case B]

Now \(N \) has a Black sibling and Red parent ... so we go to cases 3-5 at \(N \)

Removing Nodes – Bottom Up

• **Case C**: if parent \(P \) and sibling \(S \) and \(S \)'s children are Black
 – Change \(S \) to Red
 – All paths through \(P \) now have one less Black node
 – So we now have to re-balance at \(P \) !!!

![Diagram showing Case C]

CPSC 223 – Fall 2010
Removing Nodes – Bottom Up

- **Case D**: If parent \(P \) is Red, but Sibling \(S \) and \(S \)'s children are Black
 - Change \(P \) to Black
 - Change \(S \) to Red
 - This doesn’t change number of Black nodes going through \(S \)
 - It adds a Black node on the path going through \(N \)

We are done rebalancing …

Removing Nodes – Bottom Up

- **Case E**: If \(N \)'s sibling \(S \) is black, \(S \)'s right child is Black, but \(S \)'s left (inner) child is Red
 - Change \(S \)'s left child to Black
 - Rotate \(S \) to the right
 - Then consider Case F …
Removing Nodes – Bottom Up

- **Case F**: If the sibling S is Black and S’s right child is Red
 - Change S to the color of P
 - Change P to Black
 - Change the right child to Black
 - Rotate P to the left
 - N now has an additional Black node as an ancestor

We are done rebalancing ...