Today …

• In-place mergesort
• Red-Black Trees
Comments on AVL Trees

• AVL vs other approaches
 – Rotations and traversals are hard to get right
 – But more importantly, the traversals create overhead

• A Red Black tree is an alternative approach
 – In practice, (slightly) faster insertion and deletion
 – But (slightly) slower retrieval time
 – Red-black trees are typically implemented over AVL trees in practice

Red Black Trees [Bayer, 1972]

• Basic idea
 – Further relax balancing constraints
 – Use a single top-down pass for insertion/deletion
 – Rebalance as part of this top-down pass
 • Unlike AVL where a bottom-up pass is needed to rebalance
 – Generally faster than an AVL tree (insertion and deletion)
 – Lookup/retrieve not as fast
 • Because height of tree can be longer … but still $O(\log n)$

So how does this work?
Balance Constraints

1. Every node is assigned a color (either Red or Black)
2. The root is always Black
3. The children of a Red node are always Black
4. Every path from the root to a NULL node has the same number of Black nodes

Properties of Red Black Trees

• If every path from the root to a NULL node contains \(B \) black nodes …
 – There are at least \(2^B - 1 \) black nodes
 – Recall that a full tree with height \(h \) contains \(2^h - 1 \) nodes
 – Thus \(2^B - 1 \) is the size of the smallest, full Red Black tree!
Properties of Red Black Trees

• Since the root is black and there can not be 2 consecutive red nodes on a path …

 – The height of a Red Black tree is at most: \(2 \times \log_2(n+1)\)
 – Thus the height is \(O(\log n)\)!

How did we get this?

– Notice that a root-leaf path can have at most \(2B\) nodes (i.e., \(h/2 \leq B \leq h\))

\[
2^{h/2} - 1 \leq 2^B - 1 \leq n \\
2^{h/2} \leq n + 1 \\
h/2 \leq \log(n+1) \\
h \leq 2 \times \log(n+1)
\]

Properties of Red Black Trees

• Given a max height of \(2\log(n+1)\), is a Red Black tree always “Balanced”?

 – Recall the balance factor must be -1, 0, or 1 for each node in a balanced binary tree

• A Red Black tree technically is not balanced in this way … but still has \(O(\log n)\) height

 – And this is what we really care about!

\(B = 2\)

This is a valid Red Black tree
Inserting Nodes

- Always assign inserted nodes the color Red
 - If we assigned the node the color Black, we would create a path with more Black nodes than any other path
- If the parent of the inserted node is Black, then we are done!
 - Similar case if we are inserting the root
- If the parent is Red, we violate Property 3
 - We now have to adjust the tree
 - … using tree rotations and color changes

Inserting Nodes

There are two approaches:

“Bottom-up” insertion

- Similar to AVL by propagating changes up the tree

“Top-down” insertion

- Optimization to avoid traversing back up the tree

We’ll only discuss the bottom up approach
But look at a similar top-down approach later …
Inserting Nodes (Bottom Up)

If the inserted node’s parent is Red …
• We have to consider several cases
 – Let …
 \(X = \) inserted node
 \(P = \) parent
 \(S = \) sibling of \(P \)
 \(G = \) grandparent of \(X \)
 – Note that \(G \) must be Black!
• If \(S \) is Red
• If \(S \) is Black
 – If \(X \) is an outside grandchild
 – If \(X \) is an inside grandchild

Sibling is Red

• If \(S \) is Red
 – Change \(P \) and \(S \) to Black
 – Change \(G \) to Red
 – Repeat with \(G \) as the new \(X \)

NOTE: Because we are possibly propagating up, we consider the general case where \(X \) may have subtrees \(A \) and \(B \)

We have not changed the number of Black nodes on a path!