CPSC 223
Algorithms & Data Abstract Structures

Lecture 18:
AVL Trees (cont.)

Today …

• In-place mergesort
• Midterm overview
• AVL Trees (cont.) [Ch 12: pp. 681-686]
• Heapsort exercise
Midterm Overview …

Midterm

- There will be 6-7 questions
- Open book / open notes
- Closed computer / smart phone / etc.
- Be sure you understand:
 - Answers to quizzes and exercises
 - Answers to questions on slides
- Be sure you have done the reading assignments
- Worth 10% of your grade
Topics we’ve covered since last time

• More on analysis of algorithms
 – Constant factors
 – Different examples of $O(\log n)$

• More on sorting
 – Mergesort (array-based and linked-list in-place)
 – Quicksort
 – Treesort
 – Heapsort

Topics we’ve covered since last time

• Binary trees
 – Basic terminology (root, parent, child, subtree)
 – Paths, tree height
 – Full, complete, balanced

• Binary search trees
 – Ordering constraint
 – Tree traversals
 – Lookup, Retrieve, Insert, Delete (Remove)
 – Pointer-based implementation
Topics we’ve covered since last time

• Binary search trees (cont.)
 – The costs of operations
 – Degenerate cases

• Heaps
 – Structure and ordering constraint
 – Array-based representation
 – FindMax, DeleteMax, Insert
 – Trickle down (delete) and trickle up (insert)
 – Heapsort (again)

Questions?

Topics we’ve covered since last time

• AVL trees
 – Why balanced search trees are good
 – Balance factors
 – Rotations (single, double)
 – Expect at most one question on AVL trees

Questions?
AVL Trees

AVL Trees

[Adelson-Velskii & Landis, 1962]

• Use “tree rotations” to rebalance the tree
• Do tree rotations (if needed) after insert or delete
• Four cases:
 – Single rotation (“left-left”)
 – Single rotation (“right-right”)
 – Double rotation (“left-right”)
 – Double rotation (“right-left”)
• Traverse up the tree from inserted/deleted node
 – Only necessary if an insertion/deletion changes the balance
• Compute a “balance factor” at each node
AVL Trees

- General case for single rotation ("left-left")
 - Insertion in the left subtree of the left child of k_2 (subtree A)
 - Tree balanced before insertion
 - And becomes unbalanced after insertion

The rotation sets the subtree to its original height!

- We are done with insert after the rotation
 - The rotation sets the subtree (now rooted at k_1) to its original “balanced” height …
 - So no more rotations needed!

The rotation sets the subtree to its original height!
AVL Trees

• General case for single rotation (“right-right")
 – Insertion in the right subtree of the right child of k_2 (subtree A)
 – This is just the “mirror image” of the left-left case

The rotation sets the subtree to its original height!

AVL Trees -- Exercise

// return new root after left-left rotation
Node* rotateWithLeftChild(Node* k2)
{
 ...
}

// return new root after right-right subtree
Node* rotateWithRightChild(Node* k1)
{
 ...
}
AVL Trees -- Exercise

// return new root after left-left rotation
Node* rotateWithLeftChild(Node* k2)
{
 Node* k1 = k2->leftChild;
 k2->leftChild = k1->rightChild;
 k1->rightChild = k2;
 return k1;
}

AVL Trees -- Exercise

// return new root after right-right rotation
Node* rotateWithRightChild(Node* k1)
{
 Node * k2 = k1->rightChild;
 k1->rightChild = k2->leftChild;
 k2->leftChild = k1;
 return k2;
}
AVL Trees

A single rotation might not rebalance the tree …

Oops ... this (left-left) rotation didn’t help!!!
This is because we inserted into the right subtree of the left node

AVL Trees

• We sometimes need 2 rotations …
• General case for double rotation (left-right)

One of these has the inserted node
AVL Trees

- General case for double rotation (left-right) continued …

```
// return new root of left-right rotation
Node* doubleRotateWithLeftChild(Node* k3)
{
    ...
}
```

AVL Trees – Double Rotation (“left-right”)

```
// return new root of left-right rotation
Node* doubleRotateWithLeftChild(Node* k3)
{
    ...
}
```

// return new root of left-right rotation
Node* doubleRotateWithLeftChild(Node* k3)
{
 ...
}
AVL Trees – Double Rotation ("left-right")

// return new root of left-right rotation
Node* doubleRotateWithLeftChild(Node* k3)
{
 k3->leftChild = rotateWithRightChild(k3->leftChild);
 return rotateWithLeftChild(k3);
}

AVL Trees – Double Rotation ("right-left")

// return new root of right-left rotation
Node* doubleRotateWithRightChild(Node* k1)
{
 k1->rightChild = rotateWithLeftChild(k1->rightChild);
 return rotateWithRightChild(k1);
}
AVL Tree Insertion & Deletion Cost

• Cost
 – The cost for a single or double rotation is $O(1)$
 – The total cost is $O(\log n)$ since we have to traverse the tree along a path from leaf to root
 – So, $O(\log n)$ to insert + $O(\log n)$ to rebalance
 – But insertion/deletion still remains $O(\log n)$!
 • Compare to $O(n\log n)$ in our brute force approach

• For insertions
 – Once we rebalance a subtree, we are done …
 – no need to continue rebalancing
• This is *not always the case* for deletions …

AVL Tree Deletion

• Unlike insertions, for deletions we sometimes have to keep traversing up the tree after a rotation
 – Note that this doesn’t change the $O(\log n)$ deletion time
Comments on AVL Trees

• AVL vs other approaches
 – Rotations and traversals are hard to get right
 – But more importantly, the traversals create overhead
• A Red Black tree is an alternative self-balancing approach
 – In practice, (slightly) faster insertion and deletion
 – But (slightly) slower retrieval time
 – Red-black trees are often implemented in practice