Today

• Binary search trees (cont)

Assignments

• HW8 out (due Thurs)
• HW9 out today ...
• Exam 2 next week
In general, a tree forms a **heirarchy** with

- zero or more “**nodes**”
- a distinguished “**root**” node (no parents)

Nodes are arranged in “parent-child” relationships

- each node has zero or more “**children**” (child nodes)
- each node has at most one “**parent**” (parent node)
- a node *without* children is a “**leaf**” node
- a node *with* children is an “**internal**” node

A collection of trees is called a “**forest**”
A “**path**” is a sequence of nodes $n_i n_j \ldots n_k$

- the next node after n in the sequence is a child of n
- a root–to–leaf path starts at the root and traverses children ending at a leaf
- there can be many paths within a tree

![Diagram of a tree with a path highlighted](attachment:image.png)
Parent-child relationships induce “ancestor-descendant” relationships

- The **ancestor** of a node is its parent and its parent’s ancestors
- The **descendent** of a node is its children and its children’s descendents
- The descendents of a node \(n \) lie on paths from \(n \) to leaves
- The ancestors of a node \(n \) lie on paths from the root to \(n \)

Each node can also have zero or more “siblings”

- Two nodes are siblings if they have the same parent

![Diagram showing ancestor-descendant relationships and siblings]
A “subtree” is a tree rooted at a descendent of the root node

- a subtree includes all descendents of the subtree “root” \(n \)
- we often say a subtree is rooted at \(n \)

An “empty” tree has no nodes

The “height” of a tree is the length of the longest root-to-leaf path

- the height of the above tree is 3
- the height of the subtree rooted at \(b \) is 2
- the height of the subtree rooted at \(g \) is 1
Binary Trees

In a binary tree, each node has at most 2 children.

Thus, T is a binary tree if

- T has no nodes (is empty); or
- T has the form:

 r
 $\ \ \ \ \ \ \\
 T_l \quad T_r$

 - where r is the root node of T and T_l and T_r are binary trees
 - T_l is the left subtree of r and T_r is the right subtree of r

Note that this definition is recursive!

- this will be helpful as we compute over trees

We can recursively define the notion of a binary tree’s height ...

- the height of a binary tree T is:
 - 0 if T is empty
 - 1 + max of the height of the left and right subtrees of T's root
In a “**full**” binary tree

- each root-to-leaf path has the same height \(h \); and
- all internal nodes have two children

In a “**complete**” binary tree of height \(h \)

- the tree is full at height \(h - 1 \), and
- the leaf nodes are filled in from left to right
A **balanced** binary tree has for every node

- left and right subtrees that differ in height by at most 1
Binary Search Trees

A binary search tree (BST) adds additional constraints to a binary tree

- specifically, nodes are stored in sort order (by key)

The order constraint: For each node n in a BST:

- if node n_l is in the left subtree of n then $\text{key}(n_l) \leq \text{key}(n)$
- if node n_r is in the right subtree of n then $\text{key}(n_r) > \text{key}(n)$